Comparison of CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0 Backbones on YOLO V4 as Object Detector

Abstract

YOLO v4 has a structure consisting of 3 parts: backbone, neck, and head. The backbone is a part of the YOLO v4 structure that serves as a feature extractor from the image; the backbone is also a convolutional neural network that can be replaced with another convolutional neural network. Many backbones are recommended by previous research, such as CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0. Therefore, research needs to be done to determine the effect of different backbones on the  YOLO v4 model. One of the research objects that can be used is a microfossil. Research on the detection of microfossils is fundamental to assist paleontologists in knowing the species of microfossils as a determinant of rock age and distinguishing between similar microfossils. In this research, three backbones consisting of CSPDarkNet53, CSPResNeXt-50, and EfficientNet-B0 were used to train and detect image sets of 5 species of foraminiferal microfossils. The results were evaluated to determine the advantages of each backbone. There are a few metrics are that being used for evaluation, namely precision, recall, f1-score, average precision (AP), mean average precision (mAP), frames per second (FPS), and model size. As a result, the mean average precision (mAP) of the CSPDarkNet53 model reached 83.41%, the highest compared to CSPResNeXt-50 and EfficientNet-B0, which get a value of 81,00% and 81,76%. CSPResNeXt-50 model has a precision of 75.60%, recall of 81.10%, and f1-score of 78%. CSPDarkNet53 model also got the highest FPS value of 33.4FPS. However, the YOLO v4 model with the EfficientNet-B0 backbone is the lightest model, with only 156.8 MB.