Model matematika SMEIUR pada penyebaran penyakit campak dengan faktor pengobatan

Abstract

This study discusses the spread of measles in a mathematical model. Mathematical modeling is not only limited to the world of mathematics but can also be applied in the health sector. Measles is a disease with a high transmission rate. The spread of measles in this model was modified by adding the treated population and the treatment parameters of the exposed population. In this article, we examine the equilibrium points in the SMEIUR mathematical model and perform stability analysis and numerical simulations. In this study, two equilibrium points were obtained, namely the disease-free and endemic equilibrium point. After getting the equilibrium point, an analysis is carried out to find the stability of the model. Furthermore, the simulation produces a stable disease-free equilibrium point at conditions R0<1 and a stable endemic equilibrium point at conditions R0>1. In this study, a numerical simulation was carried out to see population dynamics by varying the parameter values. The simulation results show that to reduce the spread of measles, it is necessary to increase the rate of advanced immunization, the rate of the infected population undergoing treatment, and the proportion of individuals who are treated cured.