Sistem Identifikasi Tingkat Kematangan Buah Nanas Secara Non-Destruktif Berbasis Computer Vision

Abstract

A computer vision-based non-destructive pineapple maturity level identification system has been realized. This research was conducted to create a system capable of identifying six indexes of pineapple maturity level. An artificial neural network is used as a classifier for the level of maturity pineapples. Artificial neural network input is a statistical parameter consisting of mean, standard deviation, variance, kurtosis, and skewness of RGB and HSV color models pineapple images. Statistical parameters of the color model with a Pearson correlation value greater than 0.5 were used to characterize pineapple images. A total of 360 pineapple images were used in the training process with a percentage of 75% of training data and 25% of validation data. An image segmentation process is applied to separate the pineapple image from the image background. The result of this research is a pineapple maturity level identification system consisting of software and hardware which is able to identify six indexes of pineapple maturity level with average accuracy value of 98,4%.