Efektifitas Penggunaan Association Rules Mining dalam Personalisasi Website

Abstract

As the usage of the internet grows, more and more information is obtained, thus presenting challenges, especially for users and website owners. Website users often have difficulty finding products or services that are relevant to their needs caused by abundant amounts of products and services delivered on a website. Website owners often find it difficult to convey information about the right products and services to certain target users. Based on the problem given above, we can conclude that a recommendation system approach that can improve personalization on their website is needed. The recommendation system approach must be able to provide navigation on the website to make it more adaptive towards the interests and information needed by the user. This study uses Association Rules formed from Microsoft web access log data by finding visitor patterns based on frequently visited web site pages. From the results of the research conducted, the performance of the method used has a precision value of 0.896, 0.058 recall, and F-measure 0.104. Whereas the measurement of the accuracy value resulted in a performance recommendation of exactly 3%, an acceptable rate of 87%, and 10% incorrect. This research shows that the Association Rules method can increase the effectiveness of website personalization to provide relevant information recommendations for visitors. For further research, it can concentrate on improving existing methods thus website personalization becomes more adaptive.