Analisis kestabilan dan kontrol optimal model matematika penyebaran penyakit Ebola dengan variabel kontrol berupa karantina

Abstract

Ebola disease is an infectious disease caused by a virus from the genus Ebolavirus and the family Filoviridae. Ebola disease is one of the most deadly diseases for human. The purpose of the thesis is to analyze the stability of the equilibrium point and to apply the optimal control of quarantine on a mathematical model of the spread of ebola. Model without control has two equilibria, non-endemic equilibrium and endemic equilibrium. The existence of endemic equilibrium and local stability depends on the basic reproduction number (R0). The non-endemic equilibrium is asymptotically stable if R0 < 1 and endemic equilibrium tend to asymptotically stable if R0 > 1. The problem of optimal control is solved by Pontryagin’s Maximum Principle. From the numerical simulation, the result shows that control is effective enough to minimize the number of infected human population and to minimize the cost of its control.