Improved Modified Chaotic Invasive Weed Optimization Approach to Solve Multi-Target Assignment for Humanoid Robot
Abstract
The paper presents an improved modified chaotic invasive weed optimization (IMCIWO) approach for solving a multi-target assignment for humanoid robot navigation. MCIWO is improved by utilizing the Bezier curve for smoothing the path and replaces the conventional split lines. In order to efficiently determine subsequent locations of the robot from the present location on the provided terrain, such that the routes to be specifically generated for the robot are relatively small, with the shortest distance from the barriers that have been generated using the IMCIWO approach. The MCIWO approach designed the path based on obstacles and targets position which is further smoothened by the Bezier curve. Simulations are performed which is further validated by real-time experiments in WEBOT and NAO robot respectively. They show good effectiveness with each other with a deviation of under 5%. Ultimately, the superiority of the developed approach is examined with existing techniques for navigation, and findings are substantially improved.