Distance-based Indoor Localization using Empirical Path Loss Model and RSSI in Wireless Sensor Networks
Abstract
Wireless sensor networks (WSNs) have a vital role in indoor localization development. As today, there are more demands in location-based service (LBS), mainly indoor environments, which put the researches on indoor localization massive attention. As the global-positioning-system (GPS) is unreliable indoor, some methods in WSNs-based indoor localization have been developed. Path loss model-based can be useful for providing the power-distance relationship the distance-based indoor localization. Received signal strength indicator (RSSI) has been commonly utilized and proven to be a reliable yet straightforward metric in the distance-based method. We face issues related to the complexity of indoor localization to be deployed in a real situation. Hence, it motivates us to propose a simple yet having acceptable accuracy results. In this research, we applied the standard distance-based methods, which are is trilateration and min-max or bounding box algorithm. We used the RSSI values as the localization parameter from the ZigBee standard. We utilized the general path loss model to estimate the traveling distance between the transmitter (TX) and receiver (RX) based on the RSSI values. We conducted measurements in a simple indoor lobby environment to validate the performance of our proposed localization system. The results show that the min-max algorithm performs better accuracy compared to the trilateration, which yields an error distance of up to 3m. By these results, we conclude that the distance-based method using ZigBee standard working on 2.4 GHz center frequency can be reliable in the range of 1-3m. This small range is affected by the existence of interference objects (IOs) lead to signal multipath, causing the unreliability of RSSI values. These results can be the first step for building the indoor localization system, which low-cost, low-complexity, and can be applied in many fields, especially indoor robots and small devices in internet-of-things (IoT) world’s today.