Improving the Quality of Digital Images Using the Median Filter Technique to Reduce Noise
Abstract
The combination of point, line, shape and color elements combined to create a physical imitation of an object is called an image. The arrangement of the box elements in the image forms pixels or matrices. each image experiences degradation or loss of quality called noise. The effect of gaussian noise is the number of colored dots that are equal to the percentage of noise. This study raises the topic of improving the quality of digital images using median filter techniques to reduce noise. In this study using color image data (Red Green Blue) as test data and then converted into grayscale images to determine the gray degree of the image. The grayscale image is stored in the database. Then noise is generated by using random numbers. Noise in the form of impulse can be positive or negative in the form of adding pixel values to the original image, or it can reduce the value of the original image. The noise type used is salt & pepper. Gray degrees 0-255 spread. Can be calculated through image histograms. To reduce noise the median filter technique is used. Image histogram as a measure of the spread of numbers from the median filter. The result is a median filter can reduce noise salt and pepper by using a matrix kernel.