Support Vector Machine Parameter Optimization to Improve Liver Disease Estimation with Genetic Algorithm

Abstract

Liver disease is an important public health problem. Over the past few decades, machine learning has developed rapidly and it has been introduced for application in medical-related. In this study we propose Support Vector Machine optimization parameter with genetic algorithm to get a higher performance of Root Mean Square Error value of SVM in order to estimate the liver disorder. The experiment was carried out in three stages, the first step was to try the three SVM kernels with different combination of parameters manually, The second step was to try some combination of range parameters in the genetic algorithm to find the optimal value in the SVM kernel. The third step is comparing the results of the GA-SVM experiment with other regression methods. The results prove that GA has an influence on improving the performance of GA-SVM which has the lowest RMSE value compared to another regression models.