Journal Classification Based on Abstract Using Cosine Similarity and Support Vector Machine

Abstract

One of the problems related to journal publishing is the process of categorizing entry into journals according to the field of science. A large number of journal documents included in a journal editorial makes it difficult to categorize so that the process of plotting to reviewers requires a long process. The review process in a journal must be done planning according to the expertise of the reviewer, to produce a quality journal. This study aims to create a classification model that can classify journals automatically using the Cosine Similarity algorithm and Support Vector Machine in the classification process and using the TF-IDF weighting method. The object of this research is abstract in scientific journals. The journals will be classified according to the reviewer's field of expertise. Based on the experimental results, the Support Vector Machine method produces better performance accuracy than the Cosine Similarity method. The results of the calculation of the value of precision, recall, and f-score are known that the Support Vector Machine method produces better amounts, in line with the accuracy value.