Penerapan Learning Vector Quantization Pada Pengelompokan Tingkat Kematangan Buah Tomat Berdasarkan Warna Buah
Abstract
Tingkat kematangan buah tomat dapat dilihat dari warna buah. Pada penelitian sebelumnya pernah dilakukan penentuan tingkat kematangan buah tomat menggunakan fitur Hue, Saturation, dan Value (HSV), serta metode klasifikasi Learning Vector Quantization (LVQ). Pada penelitian tersebut menggunakan data citra buah tomat dari satu sisi. Pada kenyataanya, tidak semua buah tomat memiliki penyebaran warna yang sama disetiap sisinya. Oleh karena itu dibutuhkan teknik untuk merata-ratakan informasi warna dari beberapa sisi buah. Berdasarkan permasalahan tersebut, maka data citra buah tomat yang digunakan diambil dari empat sisi untuk setiap buahnya. Total data citra yang digunakan adalah 400 citra dari empat sisi dan setelah dirata-ratakan menjadi 100 data. Level kematangan buah tomat yang digunakan adalah 5 level yaitu green, breakers, turning, pink, light red, dan red. Proses pelatihan dan pengujian bobot optimal menggunakan K-Fold Cross Validation. Berdasarkan hasil pengujian, rata-rata akurasi tertinggi adalah mencapai 87,25% yang diuji menggunakan 400 citra setiap sisi buah. Berdasarkan hasil pengujian tersebut dapat disimpulkan nilai HSV yang dihasilkan dari rata-rata penggabungan citra empat sisi dapat dijadikan alternatif untuk menentukan tingkat kematangan buah tomat karena dapat meningkatkan akurasi walaupun tidak terlalu signifikan