Obstacle Avoidance using Fuzzy Logic Controller on Wheeled Soccer Robot


The purpose of this study is to apply Fuzzy Logic Controller on a wheeled soccer robot to avoid the collision with other robots in the field. The robot equipped by an omnidirectional camera as a vision sensor, a mini-PC for the image processing device, a microcontroller to handle I/O system, and three wheel's omnidirectional mover system. Omni-camera produces four input-values, namely: X coordinate ball position, Y coordinate ball position, distance and angle from obstacle to the point of interest in the camera frame. These inputs processed by a mini-PC and then forward to a microcontroller to calculate the output using Fuzzy Logic Controller. The output variables are the movement rate of the robot in the X, and Y coordinate.  These outputs will be used by the kinematics controller to manage the speed of three Omni-wheels driven by 24 volts DC motors. The experiment shows a good result with the percentage of the success of the robot catching the ball is around 70% and 80% in avoiding the obstacle. In time performance, the soccer robot with Fuzzy Logic Controller is superior by 4.67 seconds compared to the robot without this method.