Clustering Application for UKT Determination Using Pillar K-Means Clustering Algorithm and Flask Web Framework

Abstract

Clustering is one of technique in data mining which has purpose to group data into a cluster. At the end, a cluster will have different data compared with others. This paper discussed about the implementation of clustering technique in determining UKT (Uang Kuliah Tinggal) / Tuition Fee in Indonesia. UKT is a tuition fee where its amount is determined by considering students purchasing power. Most of University in Indonesia often use manual technique in order to classify UKT’s group for each student. Using web-based application, this paper proposed a new approach to automatise UKT’s grouping which leads to give an reasonable recommendation in determining the UKT’s group. Pillar K-Means algorithm had been implemented to conduct data clustering. This algorithm used pillar algorithm to initiate centroid value in K-means algorithm. By deploying students data at Institut Teknologi Sumatera Lampung as case study, the result illustrated that Pillar K-Means and silhouette coefficient value might be adopted in determining UKT’s group