Klasifikasi Keluhan Menggunakan Metode Support Vector Machine (SVM) Pada Akun Facebook Group iRaise Helpdesk

Abstract

Abstrak – Facebook Group iRaise Helpdesk merupakan salah satu layanan media sosial yang digunakan pihak PTIPD UIN Suska Riau sebagai layanan pelanggan (customer services) sistem akademik. Mengingat sistem akademik baru mengalami peralihan yang sebelumnya bernama SIMAK menjadi iRaise, sehingga masih ada permasalahan yang ditimbulkan, dan menjadi keluhan bagi penggunanya.  Untuk pengolahan data keluhan, pihak PTIPD masih menggunakan proses manual dengan menggunakan microsoft word dan excel. Sehingga pada penelitian ini akan dilakukan pengklasifikasian permasalahan sistem iRaise pada kategori multiclass yaitu: login, krs, nilai dan personal. Dengan menggunakan metode Support Vector Machine (SVM) dengan kernel RBF.  Jumlah dataset sebanyak 1040 data keluhan. Pengujian dilakukan menggunakan aplikasi RapidMiner dan diuji dengan menggunakan 10-Fold cross validation dan diukur dengan confussion matrix. Dari hasil uji coba aplikasi menunjukkan akurasi tertinggi sebesar 95.67% pengujian tanpa menggunakan feature selection pada titik C=2 dan .Kata Kunci : confussion matrix, cross validation, iraise, keluhan, klasifikasi, rapidminer, support vector machine.