Peramalan Indeks Harga Konsumen dengan Metode Singular Spectral Analysis (SSA) dan Seasonal Autoregressive Integrated Moving Average (SARIMA)
Abstract
Consumer Price Index (CPI) are the indicators used to measure the inflation and deflation of a group of goods and services in general. Forecasting CPI to be important as early detection in facing price hikes. This study uses the SSA and SARIMA. SARIMA a parametric model that requires various assumptions while SSA is a nonparametric technique that is free from a variety of assumptions, but both methods require seasonal patterns in the data. Based on the research results, methods of SSA with length window(L) of 24 and a grouping of 4 (1 group of seasonal and 3 groups of trends) and SARIMA models of order (0,1,1), (0,1,1) 6 is the most accurate and reliable models in forecasting CPI to the value Padang Sidempuan City. Forecasting CPI Padangsidimpuan City for the next 5 months with SSA method and SARIMA (0,1,1), (0,1,1) 6 shows the pattern of a trend is likely to increase but forecasting the 5th month with SSA method showed a surge in the value of CPI high or high inflation will occur.