IMPLEMENTASI METODE MULTIPLE KERNEL SUPPORT VECTOR MACHINE UNTUK SELEKSI FITUR DARI DATA EKSPRESI GEN DENGAN STUDI KASUS LEUKIMIA DAN TUMOR USUS BESAR

Abstract

Pada penelitian ini mengimplementasikan metode multiple kernel support vector machine untuk seleksi fitur. Multiple kernel merupakan metode modifikasi fungsi kernel yang mengalikan tiap elemen dari data. Metode ini melakukan seleksi fitur terhadap fitur yang kurang penting dengan tingkat akurasi lebih baik daripada metode dasar support vector machine. Uji coba dilakukan dengan menggunakan dataset ekspresi gen leukimia dan tumor usus besar. Hasil uji coba dibandingkan dengan tingkat akurasi metode support vector machine tanpa seleksi fitur. Tingkat akurasi metode multiple kernel support vector machine yang dihasilkan untuk data ekspresi gen leukimia yaitu 85% dan untuk data tumor usus besar sebesar 69%. Sedangkan tingkat akurasi dengan metode dasar support vector machine yaiu sebesar 82% untuk data leukimia dan 59% untuk data tumor usus besar. Seleksi fitur dapat mempersingkat waktu komputasi sehingga dapat dikembangkan untuk banyak aplikasi pengenalan pola. Kata Kunci: Multiple kernel, support vector  machine, seleksi fitur, data ekspresi gen