Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes


According to the BAWASLU evaluation a variety of related negative content supports supporting prospective couples to burst into various social media pages. So sometimes the content leads to a hoax issue to the issue of religious and inter-group Racial (SARA). One of the social media used by the people of Indonesia is Twitter, according to number of Twitter daily users globally claimed to be increasing, this appears to be the 3rd Quarter Twitter Financial Report of 2019 on Twitter's 3rd quarter of 2019 Financial reports, daily active users on the Twitter platform are recorded to increase by 17 percent, to the number of 145 million users. So it is necessary that a sentiment analysis study can capture a pattern of community perception on social media Twitter against the 2019 elections and it is expected that this research can help interested parties to increase voter participation rate in the next 5 years. This research method uses the Indonesian tweet data taken from 16 April 2018-16 April 2019, further data in preprocessing, text transformation, stemming Bahasa Indonesia, specifying attribute class, load dictonary and a classification of Naive Bayes using Weka. The conclusion of this study was the classification of Naive Bayes finding that the 2019 election tweet dataset had a negative perception pattern of 52% much greater than the positive perception of 18% and the neutral perception had a value of 31% higher than positive perception. Naive Bayes ' degree of classification accuracy against the training dataset is 81% and the dataset testing 76%, the average precision value for positive sentiment is 86.65%, negative sentiment is 77.15%, and neutral sentiment is worth 80.95% while the average recall rate on positive sentiment is 36.8%, negative sentiment is 93.2% and the neutral sentiment is 86.8%