

Cyberspace: Jurnal Pendidikan Teknologi Informasi

Volume 2, Nomor 1, Maret 2018, 69-83

ANALYZING CLIENT-SIDE ENCRYPTION

IMPLEMENTED IN CRYPTDB

Mira Maisura

Information Technology Education, UIN Ar-Raniry

Banda Aceh, Indonesia

E-mail: mira.maisura@ar-raniry.ac.id

Abstract

Client side encryption has become one of the choice for data security in outsourced

database as it is believed to provide more security than the server side encryption. It

allows users to protect their data and prohibit access to that data from unauthorized user.

Here, key use for encryption and decryption are all belong and known only to the user.

On the other words, data stored in the database are all in encrypted form. CryptDB, a

new cryptographic technique, where the system acts as a proxy to protect the

communication between the application server and database server, implementing the

idea. The aim of this study is to look into more detail about the encryption scheme

implemented in CryptDB in 2 different case study, using SEARCH command with the

condition given. The result of the study will present how the statement change with the

act of proxy, and the encryption scheme implemented here.

Keywords: security, database, cryptography

1. Introduction

Data and information, users, and software developers are into three unitary

interrelated with each other. Information, which is renewable every second, is expected

to reach the hands of the user at any time, whenever and wherever they are. This fast -

paced conditions trigger the software developers to create technologies that will satisfy

the desires of the user.

Outsourced database system (ODB) is the result of technology advancement in

internet and networking, as user demand for more reliable technology, which can ease

their daily work. If a company uses this system, it will ease the workload within the

company, in terms of materials, funds, or time. Thus, they can also increase their

performance in company main task.

One should be a concern in using outsourced database is that their security. Data can

be accessed easily, the possibility of being lost, damage, and change during the data

transmission process cannot be avoided. This problem can occur not only because the

action of outside attackers, but even more alarming from the insider, which can be either

a party within the company, or data server administrator. On the other hand such problem

can be solved using encryption system Encryption is one of development in which data

is stored cannot be read directly without the help of additional technology. Using the

MIRA MAISURA

Cyberspace: Jurnal Pendidikan Teknologi Informasi | 70

encryption methods as the base, scientists developed a more complete technology, where

data security is assured, the speed of data access can be overcome.

There are two types of encryption, server side, which is widely used, and client side

encryption. In server side encryption, provider will manage the user data as well as the

encryption key. These approaches ease the work of user or data owner. But as the number

of attack from insider getting higher, the trust for data administrator is decreasing. And

scientists propose the use of client-side encryption. As its name, client side encryption

allow user to manage their own key and encrypt their data before storing it in the database

[1]. The security of data is maintain by specifying who has the key and has ability to

access, and modify the data. Database administrator for example, has less possibility to

see inside the data, they can only see small amount of information regarding the stored

data.

The focus on this research is on the implementation of client side encryption,

implemented on CryptDB. We would like to see in more detail how the change happen

during storing and retrieving data in encrypted database, what role and ability user has,

and the role of proxy as the main component in CryptDB. Triggered by the fact that this

type of encryption system is a great approach for data security, there is a need for further

research and implementation in real life work.

2. Literature Review

CryptDB

CryptDB solves the security system in DBMS by providing a system where user does

not need to trust the server or its administrator. Its main purpose is to ensure the data

secrecy from interfere who has access and control over the data. Basically, CryptDB will

work by intercepting the queries sent from the application machine, and translate it into

a new form in a way that it can be executed over encrypted data [2]. Using this approach,

CryptDB tried to minimize the possibility that an adversary / untrusted party has ability

to access the data, learnt, and misuses it, unless he owns the key. There is no possible way

that unauthorized party will be able to access the data unless he owns the key or stole it

from the user, who managed it.

Architecture of CryptDB consists of two main parts:

- Frontend

This part is trusted client side, which keep the track of key use for encryption and

decryption, and database scheme which can be seen by the user.

- Server

The untrusted server is used to keep track of the encrypted scheme as well as the

auxiliary table used by CryptDB. Server will keep the encrypted form of data, including

its schema, onion encryption scheme used for computation, and the key.

ANALYZING CLIENT-SIDE ENCRYPTION IMPLEMENTED IN CRYPTDB

71 | Volume 2 No 1 Maret 2018

 Figure 1 : CryptDB architecture [3]

 Figure (2) below illustrate the working flow in CryptDB; (1) user will send a

query, which will go through the query rewriter. Here, database name, tables and data

inside it will be rewrite into encrypted form. (2) Onion Key Manager (OKM) will check

and decide whether the data need an onion key for executing the query. Onion key will

be provided if it is needed (3), then send it to the DBMS. Part (4) and (5) are part of

retrieving the data from database and using the result decrypter to obtain the original

result.

Figure 2 : CryptDB working flow

Security Overview

CryptDB provides several properties, such as:

1. If sensitive is in plaintext form, then it should not visible in the DBMS server.

2. CryptDB doesn’t hide all information, it reveals several information to the server,

depend on the application queries and its needed computation

MIRA MAISURA

Cyberspace: Jurnal Pendidikan Teknologi Informasi | 72

3. Server cannot compute the (encrypted) result for the queries involve computation

classes not requested by the application.

Popa et al., 2011 mentioned that there are 2 main safety issues CryptDB has found,

namely as follow:

1. Database administrator (DBA)

DBA mentioned here refers to the curious-untrusted DBAs who has access to the

system and might misuse the sensitive information stored in database, such as bank

account, financial documents and many more. Both actions and the actor are harmful as

it is violate the confidentiality of stored data. The curious DBA is in a type of passive

attacker, who did nothing but learn about the data. He will not change the stored data,

modifies query sent by the application, or change the retrieved information.

CryptDB provides at least two solutions for this problem. The first is by decreasing

the level of sensitive information disclose to the server using encryption system. But then

another problem come up from this system, it has either slow performance or unable to

produce output with better confidentiality.

Second solution is by increasing the ability for query execution more efficiently

Using Advance Encryption Standard (AES). Despite its strongest, AES restrains the

server for executing many queries, which is contradictory with the approach solution. One

logical solution would be to let the server to have access to the decryption key. But this

solution is a window for second threat to enter the system.

2. Adversary

Adversary gains complete access and control of the applications as well as the server.

The threat can attack the server or the proxy, which might be jeopardized. Compare to

the first threat, threat from adversary is more harmful, as he has complete access and

control to the application and server. Here we found the proof that CryptDB cannot ensure

the integrity or completeness of data stored in the database. Adversary, which has access

to the key used for encryption scheme in the database, can modify, or even worse, delete

the data stored on it.

CryptDB offers several possible solution. To increase the data security, we need to

decrease the amount of data revealed when they are endanger both the application and the

server. However, in order to implement this solution, we need to find a way to ensure that

the jeopardized application can gain only certain amount of decrypted data which can be

access by the application itself. Another possible solution is simply by providing each

user with unique decryption key. This approach will be difficult to implement in some

platform. For example in an application which has common page such as bulletin board.

To overcome this matter, CryptDB come up with idea of using different keys to perform

encryption on different data items. By doing so, each data item stored in database will

have its own unique key.

ANALYZING CLIENT-SIDE ENCRYPTION IMPLEMENTED IN CRYPTDB

73 | Volume 2 No 1 Maret 2018

With the information mentioned on the threats above, CryptDB provide three main

key ideas, that is:

1. SQL-aware encryption.

Using SQL-aware encryption strategy to perform an execution on the encrypted data.

Such strategy define that all SQL queries are formed by primitive operators, such as

equality check and joins. By knowing this CryptDB then will encrypt each data item

before storing it. Detail information about this approach will be explained in chapter 3.

2. Adjustable Query-based Encryption

In designing CryptDB, choosing the right of encryption scheme is very important. It

should be the most secure scheme which enables the query to be processed. To avoid data

being leak, CryptDB choose carefully the SQL encryption scheme for any data end to the

server. Using onion encryptions, in which each data will be encrypted accordingly,

depend on its type. Adjustable query based decrypt the database column to the least secure

onion layer. It takes short time and fast to perform such computation, as it takes only once

to visit a column and decrypt it.

3. Key chain

Key chain means creating a connection link between the encryption key and the user

password. In this manner, when user logged in to the application, he can decrypt the data

item only through a chain of key connected to the password user poses to access their

data. Otherwise, if the user is not log in, and the adversary has no information regarding

the password, then there is no possibility that he can decrypt any data, even though the

system is already jeopardized.

Client-Side Encryption in CryptDB

In CryptDB [7], there are several type of encryption is used to implement

computation over sql query, called SQL-aware encryption. Each of them has different

security level and needs in CryptDB. The use of it is also depend on the data type in

database.

1. Random (RND)

RND has the highest level of security, such as IND-CCA2, where it only used when

the user need to retrieve data from database without additional operation required on the

server side. Using generated initial vector, RND produces a cipher text from a column

name. Even though there are advantage of using RND such as it provides powerful

encryption and has ability to handle sensitive data, RND has limit some SQL computation

such as ORDER By and SUM.

2. DET

Deterministic (DET) exposes some information about the data, which make this

scheme slightly weaker than the previous one. The server can perform the computation

such as equality filter, joins, group by in this encryption level. Because of that, there are

some information reveals to the user.

MIRA MAISURA

Cyberspace: Jurnal Pendidikan Teknologi Informasi | 74

3. OPE

Order Preserving Encryption (OPE)[6] is an encryption scheme which allow

computation over encrypted data in database or/and other application. It let the server to

perform order comparison which is used for data sorting, range checking, and etc, on the

cipher text.

OPE conserves the order of cipher text and order of the plaintext to be remained the

same. For example, if, for any key, a < b , then OPE(a) < OPE(b) . Because it reveals

data order, this method of encryption is weaker in compare to DET. This computation can

be seen in case study 1.

Boldyreva et al., 2009 declared that there is a small chance to define the ideal goal

of OPE, which is the limit the information leakage of the plain text beside what is ordered.

4. HOM

Homomorphic encryption (HOM) is an encryption scheme which is IND-CCA

secure, where the unauthorized party who are curious with user data lost the ability to

distinguish between encryptions of different messages, even when allowed to make

encryptions and decryptions of its choice.

CryptDB assembles several of this techniques so that many sql operations can be

computed over the encrypted data. Basically this encryption system sustains the

relationship between two different plain text. By using certain computation, HOM, which

is used to compute and analyze mathematical operations, generates an encrypted data,

which when it is decrypted, it will return the same result as the operation done in plaintext.

Scheme Operation Example

RND None AES in UFE

HOME +, * Pailier

DET Equality AES in CTR

JOIN Join , OPE-JOIN new

SEARCH ILIKE Song algorithm

OPE Order Boldyreva

Table 1: Security Level of Encryption Scheme

5. Join (JOIN and OPE-JOIN)

There are 2 join operations supported in CryptDB. First is for finding data using

equality, and the other for checking data order.

For finding equality from two different column, we need to use different key for

DET, so that we can avoid the possibility of cross-column correlation to happen. DBMS

ANALYZING CLIENT-SIDE ENCRYPTION IMPLEMENTED IN CRYPTDB

75 | Volume 2 No 1 Maret 2018

also should not have ability to connect the columns beside what user asked for. Therefore,

only connected columns are encrypted with the same key, while the others are not.

While all operation conducted in DET is supported by JOIN, as well as finding the

equality of different columns, OPE-JOIN use order relation to enable all computation

using JOIN. OPE scheme has a lack in structure, because of that it is not possible to

compute the order check in the similar procedure as in equality check.

Here, the 2 columns which is in pair will need to be disclosed earlier by the

application, or else in all layer of OPE, the same key will be used.

Figure 3: Eq and Ord onion

6. Word Search (SEARCH)

As its name, this method is used for searching on encrypted data, by implementing

the Song’s Algorithm. In security level, it is almost as secure as RND, because there is

no data leakage after the computation. The only drawback of this method is that it reveals

the frequency of word repetition, if there exist such, which ease the adversaries to

calculate the possibility of repeated words.

3. Result

During the 2 case studies, we will use the original SQL statement as comparison to

check how the data transform into the new form. It includes the changes of SQL

statement and the result displayed. We would like to also see what if, for some reason,

some adversaries has a knowledge about the table name in encrypted form, whether he

will be able to perform any operation or not.

We created simple database called uni_bonn as shown in table (1). Database

uni_bonn consists of original data we manually inserted. For security reason, storing

original data into the database is not recommended. Here, proxy will act as a data

translator, and transform all information displayed above in encrypted form

MIRA MAISURA

Cyberspace: Jurnal Pendidikan Teknologi Informasi | 76

id username department grade sid

1 Alice biology 3 40

2 Bob math 2 50

3 Eve medizine 5 80

4 Mary arts 1 110

5 Claire social science 2 220

Table 3: Database created for case studies

If the table is already encrypted, as shown in table (4), then, we can be sure that our data

is saved. We see that the table name already changed from username to table

PEPKJXJWFR.

tables_in_uni_bonn

table_PEPKJXJWFR

Table 4 : encrypted table

Case Study 1: Search with condition

In case study (1) , we will perform search query over encrypted data, with the given

condition.

1. SELECT * from username where id >3

For such query, CryptDB will return all information which satisfy the condition. In

the proxy side, the result will printed out in encrypted form as shown in Table 4, which

is clearly part of the completed table which printed out in the case study 0.

ANALYZING CLIENT-SIDE ENCRYPTION IMPLEMENTED IN CRYPTDB

77 | Volume 2 No 1 Maret 2018

IUOHJZM

RYXoEq

SKIASJ

JMCUo

Eq

SRNLGSVJBS

oEq

cdb_saltZX

WVQPYF

WY

WDRMQXE

LIIoEq

cdb_saltMA

OIYEZWLY

FNEZKFVS

FZoEq

cdb_saltYDAR

RSQVGY

7702453780

396703159

??5?????

AK????#

I<?+6??

=????7??

u]

B???{?xij5j????

9?C?xV???????

?]??????!??/???

?????

2596416236

337042212

977441607584

2806816

13900117716

792220520

58188319395

87111618

154359662258

79437323

3029401382

327740934

z???H??

W???o!?

zx??Y??

???B?&?

????

P??$1?6?I?|8??

?????lmz???F??

???5??0j??????

d8???`

1239549034

6234820682

140240002619

23501584

46183527115

1616018

13848062050

337147543

109023336200

37794939

 Table 5: return result for id>3

Case Study 2: Like command

1. SELECT * from username LIKE %c%;

Figure 4: LIKE command-1

2. SELECT * from username LIKE “%Alice” ;

Figure 5: LIKE command-2

In this case study, we tried several combinations of using LIKE command, to see if

there is any small chance that it will return some value. But at the end, all of them always

return false. At this point, we can assume that LIKE command is one of the restriction in

CryptDB.

4. Analysis

In CryptDB, before storing the data in database, it will translated into an encrypted

form by proxy. We will divide the process, from encrypting the data, store and search

execution perform in CryptDB, by using the case studies.

MIRA MAISURA

Cyberspace: Jurnal Pendidikan Teknologi Informasi | 78

Queries over encrypted Data

While doing the experiment in case studies before, we see that the sql statement

changed significantly from the original, with the help of proxy. We will use the statement

in case study 1;

 SELECT *

 FROM username

 WHERE id > 3

select

`uni_bonn`.`table_PEPKJXJWFR`.`IUOHJZMRYXoEq`,`uni_bonn`.`table_PEPKJXJWFR

`.`SKIASJJMCUoEq`,`uni_bonn`.`table_PEPKJXJWFR`.`SRNLGSVJBSoEq`,`uni_bonn`.

`table_PEPKJXJWFR`.`cdb_saltZXWVQPYFWY`,`uni_bonn`.`table_PEPKJXJWFR`.`W

DRMQXELIIoEq`,`uni_bonn`.`table_PEPKJXJWFR`.`cdb_saltMAOIYEZWLY`,`uni_bon

n`.`table_PEPKJXJWFR`.`FNEZKFVSFZoEq`,`uni_bonn`.`table_PEPKJXJWFR`.`cdb_sal

tYDARRSQVGY`

from `uni_bonn`.`table_PEPKJXJWFR`

where (`uni_bonn`.`table_PEPKJXJWFR`.`PHGIZGUTJYoOrder` > 15734563768)

In proxy, the statement change into gibberish message as shown above. Application

ask for every information in database, by calling all columns name in encrypted form.

From query translated into `uni_bonn`.`table_PEPKJXJWFR`, which is in the form of :

username ENCRYPTED , and the condition given is with id > 3, translated with the use

of OPE. In general, the statement above can be written as follows:

SELECT

id_OPE , username_DET , department_DET , grade_OPE , id_OPE

FROM

 username_ENCRYPTED

 WHERE

 id_OPE > ENCRYPT_OPE(3)

In case study 1, proxy directly transform the sql statement in the format above. We

would like to see, what will it do if we use the sign of != , as follows :

 SELECT

FROM username

WHERE department != ‘math’

While computing this query, in the proxy side, it show how the data is being

translated and encrypted step by step, it printed out as:

QUERY: select * from username where department != 'math'

Adjusting onion!

onion: oEq

ADJUST:

 UPDATE `uni_bonn`.table_PEPKJXJWFR

SET SRNLGSVJBSoEq = cryptdb_decrypt_text_sem (`uni_bonn`.`table_PEPKJXJWFR`.`SRNLGSVJBSoEq` AS

`SRNLGSVJBSoEq`,'??????o???????d?',`uni_bonn`.`table_PEPKJXJWFR`.`cdb_saltZXWVQPYFWY` AS

`cdb_saltZXWVQPYFWY`);

ANALYZING CLIENT-SIDE ENCRYPTION IMPLEMENTED IN CRYPTDB

79 | Volume 2 No 1 Maret 2018

From this query, we see how CryptDB actually read the query execution over cipher

text. After receiving query from application, CryptDB will do the following:

a. Adjust which onion should be used. In Table 3, it shows that each table is written in

onion encryption

b. Take the encrypted value of department, in this query is correspondent to

SRNLGSVJBSoEq and use in UPDATE and SET statement.

c. Take result from (b) and applied in the original query but in encrypted form. In

general we can write it as:

SELECT id_OPE, column_ENCRYPT, FROM table_ENCRYPT, WHERE (UPDATE, SET value)

In all case studies, server return the expected value to the application without

decrypting it. Question raise from here, how can the system read the data without

decrypting it first? What type of algorithm is used to sort the requested value?

As all data are being encrypted before storing it in database, it is common known that

in order to process some information requested by user, the overall data must decrypted

first. But in this way, there will be data leakage, much more than what user asked for. For

doing so, user also need to trust the untrusted server the perform of the operation and it

can become a security thread.

So far, from both case studies, we can actually see that CryptDB assign each value

with different type of encryption. There are many approaches for computation over

encrypted data without decrypting any database such using fully homomorphic

encryption which is prohibited in practice.

Song Algorithms

In order to make the data more secure, CryptDB rearrange the words and remove if

there is word repetition in database. Song et al., 2000 mentioned that there is a

cryptographic scheme which provide a security proof in encryption system, by segregate

the search ability if the user is not authorized. It also has feature for searching hidden

queries, where user can ask the server to search specific word without revealing the secret

word itself to the server. In this way, the adversaries or untrusted party will have no ability

to learn about the plaintext given the only cipher text if such scheme is applied.

MIRA MAISURA

Cyberspace: Jurnal Pendidikan Teknologi Informasi | 80

 Figure 6: Gobberish Message Gibberish image for restricted access

The flow of the use of Word search method is the following:

a. The key word will be split into several parts for every column where SEARCH is

needed. It can be done by using keyword extraction for example

b. Remove all the words which has duplication or repetition.

c. Rearrange the positions of the word.

d. Encrypt the word by using the Song’s algorithm

e. Group together if there are words with the same size.

In the basic scheme of Song’s Algorithm [3], the scheme work as follows; First, user

will generate a sequence of pseudorandom value using a generator G with n-m bits long

each. To encrypt that word, user will take the value of and set of and pseudorandom

function with the specific key. This computation will give an output in cipher text form.

Set of and can only be generated by authorized user and no one else can decrypt it.

 Figure 7: Basic song’s scheme

In case study 2, we tried to get the data about specific user by sending the query

with LIKE command;

ANALYZING CLIENT-SIDE ENCRYPTION IMPLEMENTED IN CRYPTDB

81 | Volume 2 No 1 Maret 2018

SELECT * FROM username WHERE username LIKE %c% ;

 And

 SELECT * FROM username WHERE username LIKE “%alice%”.

Based on R.A Popa et al., 2011, this operation can be done in CryptDB using Word

Search. As far as the word sent is in a full word, then it can be completed. Application

will send such as query and proxy will take its encrypted form and send it to the DBMS,

which will search for the match word using UDFs function.

In our experiment, such query will return nothing but invalid statement. This is a

contradiction with the previous work. It is possible the word search can only return some

result if the query sent by the application is providing the exact word, such as:

SELECT id FROM username WHERE username = ‘Alice’

which works in the similar way with the case study 1. This query will take the

encrypted value of Alice, find the matching word in the database and return the exact id

to the application.

5. Conclusion

Server side encryption ask user to put their trust on the untrusted server completely.

User let the provider to manage their data together with the key. It might be efficient

enough and less work for user, but it become a security thread. On the other hand, Client-

side encryption provides the opposite service of server-side encryption. It allows the user

to manage their own data. Starting with encrypting their data in the local machine and

keep the encryption key for themselves. Unless the user loss the key or let other user to

learn their key, it is less possible that the data can be stolen easily.

From this point of view, we can assume that Client side encryption provide better

security comparing to server side encryption. But even so, there is still a security thread

need to be considered happen in this type of encryption.

Security Issue

Comparing the security between the basic outsourced database, CryptDB, and

Monomi, is quite obvious. CryptDB work better by applying the client-side encryption,

which reduce the possibility for adversary or unauthorized user to sneak into the data.

Even though the data is stored after being encrypted by user, other user can still learn

about it. S. Tu et al., 2013 summarized it as the following:

MIRA MAISURA

Cyberspace: Jurnal Pendidikan Teknologi Informasi | 82

Encryption Scheme SQL operations Leakage

Randomized AES +

CBC

None None

Deterministic AES +

CMC or FFX

a = const, IN, GROUP

BY, equi-join

Duplicates

OPE a> const. MAX,

ORDER BY

Order+partial

plaintext

Paillier a + b , SUM(a) None

SEARCH a LIKE pattern None

 Table 6: Information reveals in encrypted database [8]

Some encryption scheme reveals some information regarding the data, either it is

more what the user request, or information leakage which is need to process the query.

Storage Limitation

There are several reasons why one should have a big space for data storing before

implementing CryptDB, such as:

1. For each data store in database, it will be encrypted using onion encryption, so that

there will be multiple column for the same field exists in database.

2. Depend on the scheme used, the cipher text size can change to smaller, or even the

same size. So then, we will have double data size from the original

3. CryptDB will encrypt all data, it does not distinguish between sensitive or not.

Contradictory fact

In our experiments, we are focusing on two main case studies, one with the “>” sign

is corresponded to OPE, and LIKE command to SEARCH approaches. We found that the

computation using OPE in case study 1 will reveals some information to the application,

such as data order of plaintext, as mentioned in the above table.

There is one point from the claim about data reveals that contradictory with the query

in case study 2. We computed a LIKE pattern in CryptDB. Based on R.A Popa et al., 2011

and S. Tu et al., 2013, CryptDB will reveal in which rows the match word that we are

searching is located. In our case study, there is no data reveals. After sending such query,

CryptDB return it as invalid. We have tried by using different combination for search

with LIKE, but it still return the same. Instead, SEARCH can be computed if the query

use an equal sign with the exact word in it.

If the result we have got so far is true, then we might assume that CryptDB is one

level more secure than what it claims in the previous work.

ANALYZING CLIENT-SIDE ENCRYPTION IMPLEMENTED IN CRYPTDB

83 | Volume 2 No 1 Maret 2018

References

[1] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB : Protecting

confidentiality with encrypted query processing. In Proc. of the 3rd SOSP, pages 85-100,

Cascais, Portugal, Oct 2011

[2] M. G. Solomon, V. Sunderam, L. Xiong , Towards Secure Cloud Database with fine-grained

access control Book of Data and Application Security and Privacy, pages 324-338 , Springer

berlin Heidelberg, 2014

[3] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB : A practical

encrypted relational DBMS. In Proc. of 23rd ACM Symposium on Operating Systems

Principles, pages 85-100, USA, 2011

[4] S. Tu , M.F. Kaashoek, S. Madden, N. Zeldovich. Processing analytical queries over

encrypted data. In Proc. of the VLDB Endowment Volume 6, pages 289-300, March 2013

[6] R. A. Popa, F. H. li, N. Zeldovich . An ideal-security protocol for order-preserving encoding.

In Proc Sp'13 of the 2013 IEEE Symposium on Security and Privacy, pages 463-477,

Washington, DC, USA, 2013

[7] CryptDB https://css.csail.mit.edu/cryptdb/

[8] S. Tu , M.F. Kaashoek, S. Madden, N. Zeldovich. Processing analytical queries over

encrypted data. . In Proc. of the VLDB Endowment Volume 6, pages 289-300, March 2013

[9] A. Boldyreva, N. Chenette, Y.Lee, A. O'Neil. Order-Preserving Symmetric Encryption.

In Proc of the 28th Annual International Conference on Advances in Cryptology : The

Theory and Applications of Cryptographic Techniques, pages 224-241, Berlin, Heidelberg,

2009

[10] CryptDB source Code, available at https://github.com/CryptDB/cryptdb

[11]D. X. Song, D. Wagner, A. Perrig. Practical Techniques for Search on Encrypted Data.

In Proc of the 2000 IEEE Symposium on Security and Privacy, page 44, USA, 2000

https://css.csail.mit.edu/cryptdb/
https://github.com/CryptDB/cryptdb
https://github.com/CryptDB/cryptdb

