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Abstract: In this paper, we show that the exact energy eigenvalues and eigenfunctions of the Schrödinger 

equation for charged particles moving in certain class of noncentral potentials can be easily calculated 

analytically in a simple and elegant manner by using Supersymmetric method (SUSYQM). We discuss the 

Poschl-Teller plus Scarf non-central potential systems. Then, by operating the lowering operator we get the 

ground state wave function, and the excited state wave functions are obtained by operating raising operator 

repeatedly. The energy eigenvalue is expressed in the closed form obtained using the shape invariant properties. 

The results are in exact agreement with other methods. 
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 INTRODUCTION 

One of the important work in 

theoretical physics is to obtain exact 

solution of the Schrödinger equation for 

special potentials (Ballentine, 1999). It is 

well known that exact solution of 

Schrödinger equation are only possible for 

certain cases. The exact solution of 

Schrödinger equation for a class of non-

central potentials already studied in 

quantum chemistry (Gonul and Kocak, 

2005), With the advent of supersymmetric 

quantum mechanics SUSYQM (Gonul and 

Zorba, 2000), and the idea of shape 

invariance (Gendenshtein1983), study of 

potential problems in non-relativistic 

quantum theory has received renewed 

interest. SUSYQM allows one to determine 

eigenvalues and eigenstates of known 

analytically solvable potentials using 

algebra operator formalism without ever 

having to solve the Schrödinger differential 

equation by standard series method. 

However, the operator method has so far 

been applied only to one dimensional and 

spherically symmetric theree dimensional 

problems. Supersymmetri is, by definition 

(Ranabir at all, 1988), a symmetry between 

fermions and boson. A supersymmetric 

field theoretical model consists of a set of 

quantum fields and of a lagrangian for them 

which exhibit such a symmetry. The 

Lagrangian determines, through the action 

principle, the equations of motion and 

hence the dynamical behaviour of the 

particle. 

Recently, some authors have 

investigated the energy spectra and 

eigenfunction with Non-central potential 

(Meyur at all, 2009), Trigonometric Poschl-

Teller plus Rosen-Morse using SUSY 

(Antomi at all, 2013), Hulthén plus 

Manning-Rosen potential, and Scarf 

poential plus Poschl-Teller using NU (Cari 

at all, 2012). In this paper, we investigate 

the energy eigenvalues and eigenfunction of 

the Poschl-Teller plus Scarf non-central 

potential system using SUSYQM aproach. 

The trigonometric Scarf potential is also 

called as generalized Poschl-Teller 

potential (Xu at all, 2010), The  

trigonometric Poschl-Teller play the 

essential roles in electrodynamics 

interatomic and intermolecular forces and 

can be used to describe molecular 

vibrations. Some of these trigonometric 

potential are exactly solvable or quasi – 

exactly solvable and their bound state 

solutions have been reported(El Kineni, 

2001). 
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REVIEW OF FORMULA FOR 

SUPERSYMMETRY QUANTUM 

MECHANICS 

A. Supersymmetry Quantum Mechanics 

(SUSY QM) 

Witten defined the algebra of a 

supersymmetry quantum system,  there are 

super charge operators iQ which commute 

with the Hamiltonian ssH [21] 

  0, ssi HQ  with,  i = 1, 2, 3, …N  (1) 

and  they obey to algebra    ssijji HQQ ,  

with ssH  is called Supersymmetric 

Hamiltonian. Witten stated that the simplest 

quantum mechanical system has N=2, it 

was later shown that the case where N = 1, 

if it is supersymmetric, it is equivalent to an 

N = 2 supersymmetric quantum system 

(Ranabir, 1988),  In the case where N = 2 

we can define, 
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 1  is the usual 

momentum operator. For example two 

component, we shall write ssH  as H . 

using equation (1) and (2) we get, 
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with     and   , is defined as 

supersymmetry partner in the Hamiltonian. 

)(xV
and )(xV

 are the supersymmetry 

partner each other.  

Thus, solving equation (4a) and 

(4b), Hamiltonian equation can be 

faktorizated,  
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with, A  as raising operator, and A  as 

lowering operator. 

 

Shape Invariance 

Gendenshteın [6] discovered another 

symmetry which if the supersymmetric 

system satisfies it will be an exactly 

solvable system, this symmetry is known as 

shape invariance. If our potential satisfies 

shape invariance we can readily write down 

its bound state spectrum, and with the help 

of the charge operators we can find the 

bound state wave functions. It turned out 

that all the potentials which were known to 

be exactly solvable until then have the 

shape invariance symmetry. If the 

supersymmetric partner potentials have the 

same dependence on x but differ in a 

parameter, in such a way that they are 

related to each other by a change of of that 

parameter, then they are said to be shape 

invariant. Gendenshteın stated this 

condition in this way, 
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where j = 0,1,2,.., and a is a parameter in 

our original potential whose ground state 

energy is zero. )(1 jj afa   where  f  is 

assumed to be an arbitrary function for the 

time being. The remainder )( jaR  can be 

dependent on the parametrization variable a 
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but never on x. In this case V is said to be 

shape invariant, and we can readily find its 

spectrum,  take a look at H, 
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Acoording to equation.(9) a further 

equation is obtained between )(xV
and )(xV

 

we get, 
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where )(xV  is often stated os effective 

potential 
effV . While )(x is determined 

hypothetically based on the shape of 

effective potential from the associated 

system. 

The hamiltonian equation can be 

generalized, 
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By comparing equation (8) and (9), it is 

found that  
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10 )( . So that, in 

eigen energy spectra, the value of   , can 

be generalized as follows,  
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Furthermore, we get the total energy 

spectra,  
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with    as ground state energy in a 

Hamiltonian lowering partner potential. 

Based on the characteristics of lowering 

operator, then the equation of ground state 

wave function can be obtained from the 

following equation, 

0
)(

0 


A  (14) 

Meanwhile, the excited wave function, 

one and so forth   
  (     ) can be 

obtained by using raising operator and 

ground state wave function   
  (     ). In 

general, the equation of wave function can 

be stated as follow,  
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SOLUTION OF SCHRÖDINGER 

EQUATION FOR POSCHL-TELLER 

PLUS TRIGONOMETRIC SCARF 

NON-CENTRAL POTENTIAL USING 

SUPERSYMMETRY 

Schrödinger equation Poschl-Teller plus 

Scarf Non-central potential is the potentials 

present simulataneusly in the quantum 

system. This non-central potential is 

expressed as, 
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The three dimensional Schrödinger 

equation for Poschl-Teller plus 

trigonometric Scarf non-central potential is 

written as, 
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 If equation (17) multiplied by factor, (
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 ), and the result is solve using 

separation variable method since the non-

central potential is separable. By setting
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(18) 

from equation (18) we obtain radial and 

angular Schrödinger equation as, 
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with  (   ) is constanta variabel 

separable, where   as orbital momentum 

number. 



28 
 

From equation (19) we get radial 

and angular wave function Schrödinger 

equation with single variable as following, 
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or equation (20) multiplied by (
r

R ), with 
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 , so using symple algebra, we 

get, 
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and than, for solve radial Schrödinger 

equation, we use approximation for 

centrifugal term,  
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from equation (22) simplied by (
m2

2
 ) we 

get radial Schrödinger equation,  
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and we have the angular and Schrödinger 

equation as, 
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and we have set 2
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equation  (24) will be, 
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with 2m as variable separation and we get 

angular Schrödinger equation one 

dimentional, 
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The solution of Radial Scrodinger 

equation Poschl Teller plus 

trigonometric Scarf potential 

Factor R in equation (20) is defined 

as wave function  , then the Schrödinger 

equation for Poschl-Teller plus Scarf non-

central potential in radial with the 

assumption of 2

2

2

' 
m

  can be rewritten 

as follow, 
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Based on equation (28), the 

effective potential of radial SE Poschl-

Teller plus trigonometric Scarf non-central 

potential can be rewritten as follow, 
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or, 
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By inserting effective potential in equation 

(30) into equation (10), its obtained 

   














 



 02

2

222

2
2 )1(

2cos

)1(

sin

)1'('

2
)('

2
)( d

m

bbaa

m
x

m
x

rr









 (31) 

By using incisive hypothesis, it is assumed 

that superpotential in equation (30) is, 
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Where A and B are indefinite constantans 

that will be calculated. From equation (32), 

we can determine the value of )(' x  and 

)(2 x , then the result is distributed into 

equation (31), then the following is 

obtained, 
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By analysing the similar concept between 

left flank and right flank, from equation 

(33), it is obtained, 
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from the three equation in equation (34), it 

is obtained, 
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The value of A and B are determined in 

certain way so the value of   
( )

 is equal to 

zero, so, 
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By using equation. (6) and (36), we get 
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The ground state wave function can be 

obtained from equation (14) and (38), 

which are, 
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Then the ground state wave function of 

rosen more potential is as follow, 
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By using equation (15) we can obtain 

excited wave function on the first level as 

follow,  
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where 1'' 10  aaaa , ……, naan  '  

is the independent parametre to variable 

“r”. By inserting the value of the parametre 

to equation (39) and (37) and by using 

equation (40), the following we get, 












)cot('

2
)tan(

22
);( 0

)(

1 


 rr a
m

b
mdr

d

m
ar



    )1'(
)sin()cos(

)1(  arr
b

C


  

         ')2()2'(
)sin()cos()1'()sin()cos(1

2

arbrarbr ab
m

C









  









 )cot('

2
)tan(

2




rr a
m

b
m

  

    )1'(
)sin()cos(

)1(  arr
b

C


 

     22
)cos()1'2()sin(12

2



rr ab

m




 

    ')sin()cos(
arr

b

C


 (41) 

The breakdown in equation (41) can be 

continued to find wave function 
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The determination of the potential 

partner which have shape invariant, by 

using equation (8a) and (8b) results, 
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and, 
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If we have choose parameters          
    ,           …then   (    ) 
Obtained if on equ. (42) the value of   , 

changed into     , i.e 
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From those equ. (42b) and (43) can be seen 

that V+ (r,a0) have similar shape with 

  (    ), and with using shape invariance  

relation on equ. (8) obtained R(a1) i.e,, 
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We repeat the step as on the 

determination of equ. (48) by using the 

steps equ. (42a), (42b), and (43), to obtain 

equation   (    ) and    (    ), so 

obtained, 
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From equ. (45a) and (45b) so obtained, 
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Then, the determination steps on equ. (44) 

or equ. (46) above are repeated until 

parameters heading to n, an  to determinate 

R(an) and finally obtained, 
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If equ. (47) and equ. (36c) incorporated to 

equation (13) obtained energy spectrum for 

Poschl-Teller system i.e., 
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be rewritten energy solution of Schrödinger 

equation for Poschl-Teller plus Scarf non-

central potential as, 
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Equation (49) showed the process of energy 

spectra of Poschl-Teller plus Scarf non-

central potential, with,  

ℏ : planck constants,  

𝑚 : mass of particle 

  and 𝑏 : constants potential depth,  

𝑛 : principe quatum numbers, 𝑛=1,2,3…  

𝑛  : radial quantum numbers, 𝑛 =0,1,2…  

  : orbital quantum numbers (the value same 

with polar wave function solving) 

 =0,1,2…𝑛−1. 

 

The solution of angular Schrödinger 

equation Poschl-Teller plus 

trigonometric Scarf non-central non-

central potential. 

To ease the solution of angular 

Schrödinger Equation, i.e., 
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If equ. (50) incorporated to equ. (28) 

so angular Schrödinger equation Poschl-

Teller plus Scarf non-central potential 

chanced into, 
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Based on equ. (51), effective 

potential of angular Poschl-Teller plus 

trigonometric Scarf non-central potential 

describe as, 
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if, 
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According to the form of those 

effective potential equations, then 

superpotential equation of Angular Poschl-

Teller plus trigonometric Scarf non-central 

potential can be describe as,  
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where A and B are unstable constant that 

will be counted. From equ. (54), 
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thus the results are subtituted into equation 

(6), obtained relation,  
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By using in common concept of coefficient 

between left and right internode, so that 

from equation (55), value is obtained, 
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from those third equation on equ. (56) is 

obtained, 
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A and  B value are chosen so that )(

0

E  value 

is zero. 

By using equ. (8a) and (8b) are obtained, 
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(59b) 

From  those two equations (59a) and (59b) 

is obtained             
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 (60)  

From those two equ. (59b) and (60) can be 

seen that V+ ( ,a0) have the same form with 

  (    𝑏 ) , and by using shape invariance 

relation on equ. (8), is obtained  (  ) i.e., 
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We repeated the step as on 

determination of equ. (61) with using steps 

equ. (59), and equ. (60) to obtain   (    ) 
and    (    ) equations, so obtained, 
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By repeated the step from equ. (62a) to 

(62b) we often,  
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Then determination steps on equ. (61) or 

equ. (63) on above are repeated until 

parameters heading to n, an𝑏  to deteminate 

R(an𝑏 ) as on equ. (64) and finally obtained 

the order of energy parameters that 

described, 
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If equ. (65) and equ. (57c) are inserted into 

equation (13) we obtain energy spectrum of 

Poschl-Teller plus trigonometric Scarf non-

central system so, 
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(66) 

By using the same order of energy 

parameters with eig en value of angular square momentum as mentioned on equ. (66) so obtained angular quantum numbers that described as, 
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then   nM            (67)         

angular quantum numbers on equation (67) 

is used to calculate energy spectrum 

potential non-central system.              

By using equ. (6) and (58) are 

obtained 
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By using decreasing operator on equ 

(68b), determinated basic wave function for 

angular Poschl-Teller plus trigonometric 

Scarf non-central potetial as follows, 
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Then, by using increasing operator 

on equ (68a) and basic wave function 

determinated first level excited wave 

function,  
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(70)

 
To determinate excited wave 

function above can be done as on 

determination of  first level excited wave 

function as follows, 
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Therefore obtained wave function level that 

is wanted. 

Since   
( )
 (     )    
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get, 
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With, 
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Furthermore, the result of each 

calculation from 1
st 

and 2
nd

 excited wave 

function, with the value 𝑛 , m, a, and b, 

which is from table 2, at the same time 

altogether with the visualisation of polar 

wave function shown on table 2, below, 
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CONCLUSION 

Based on the describtion, proved that 

Poschl-Teller plus trigonometric Scarf non-

central potential for group of shape 

invariance potential can be solved with 

Supersimmetric method. 

 

 

REFERENCE 

 

Ballentine, 1999, Quantum mechanics, 

Simon Fraser University 

Gonul.B and Zorba.I, Phys. Lett. A Vol 269 

(2000) 83-88, Supersymmetric Solution 

of Non-Central Potetials,Department 

of Engineering Physics, Gaziantep 

University, Turkey 

Gonul. B and Kocak. M, arXiv : quant-

ph/0409085v3], Systemic Search of 

Exactly Solvable Non-Central 

Potentials, Department of Engineering 

Physics, Gaziantep University, 

Turkey,(2005) 

F. Cooper, A. Khare, U. Sukhatme, Phys. 

Rep. 251 _1995. 

267, (1984) 

L Gendenshtein L. E, Derivation of exact 

spectra of the schrodinger equation by 

means of supersymmetry.JETP 

Letters,38(6):356, (1983) 

Ranabir Dutt, Avinash Khare, and Uday P. 

Sukhatme. Supersymmetry, shape 

invariance, and exactly solvable 

potentials. American Journal of 

Physics, 56(2):163–168, (1988). 

M.F. Sohnius, Introducing Supersymmetry 

(Cambridge CB3 9EW, NHC: England, 

(1985) 

Witten E., Dynamical Breaking of 

Supersymmetry, Nucl. Phys. B185,513-

554, (1981) 

Suparmi, Desertation, Semiclassical SUSY 

approace  in Quantum Mechanics, 

Department of  Physics, Suny at 

Albany. USA, (1992) 

Antomi S, .Suparmi, Cari, Hatma Y. 

Research Inventy International Journal 

Engineering and Science. Analysis of 

Energy Spectra and Wave Function of  

Trigonometric Poschl-Teller plus 

Rosen Morse Non-Central Potentials 



35 
 

 
 

Using Supersymmetric Quantum 

Mechanics Approach, Department of  

Physics,  Sebelas Maret Universitas 

Indonesia, (2013) 

Cari, Suparmi, IOSR Journal of Applied 

Physics. Approximate Solution of 

Schrodinger equation for 

Trigonometric Scarf with the Poschl-

Teller Non-Central Potentials Using 

NU Method, Physics Department,  

Sebelas Maret Universitas. Indonesia, 

(2012) 

S. Meyur, S. Debnath. Eigen spectra for 

Woods-Saxon plus Rosen-Morse 

potential , Lat. Am. J. Phys. Educ. Vol. 

4, No. 3, Sept. (2010) 

Y. Xu, S. He and C.S. Jia, Approximate 

analytical solutions of the Klein-

Gordon equation with theP¨oschl-

Teller potential including the 

centrifugal term, Phys. Scr. 81 (2010) 

045001. 

A.H. El Kineni and M. Daoud, Coherent 

States a la Klaude-Perelomov for the 

Poschl-Teller potentials,Phys. Lett. A 

283 (2001) 291-299 


